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Curvature instability in fluid membranes with polymer lipids subject to tension

T. Kohyama
Faculty of Education, Shiga University, Otsu 520, Japan
(Received 20 August 1997

Shape transformations of a flat fluid membrane with polymer lipids subject to lateral tension are studied as
an approximation for multimembrane systems. Using Monte Carlo simulations, we find several characteristic
structures of membranes, such as thermal fluctuations, large localized deformations, and undulations due to a
curvature instability. The effect of thermal fluctuations on the curvature instability is investigated, and the
undulations are characterized by a single-mode approximation for unstable modes. It is shown that thermal
fluctuations, the curvature instability and vesiculation determine the parameter region in which an undulating
membrane is observed. The phase diagram of undulation obtained through simulations closely resembles that
measured experimentally for “biogels.” This suggests that the undulation corresponds to defects in multimem-
brane systems and that the curvature instability is the main cause of defect formation in “biogels.”
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[. INTRODUCTION polymer lipid concentration. At a higher concentration, the
viscosity of the system returns to that of a fluid. By x-ray
Complex properties of fluid membranes composed of amscattering methodib], some kinds of defects in the multila-
phiphilic substances have attracted a great deal of attentiomellar phase have been observed. These are thought to play
[1]. Fluid membranes, for example biological membranesan important role in the gel formation. Recent direct obser-
often contain many kinds of polymer inclusions which in vations employing freeze-fracture electron microscdfy
many cases affect the physical properties of the membranebkave clarified the defect structures. They have revealed many
such as elasticity. The effects of polymer inclusions in fluidcomplicated vesicular and cylindrical defects which are con-
membranes have been studied extensively, and the interagected when the system is in the gel phase.
tion between inclusions has been analyzed theoretically In a previous work, we theoretically described the phase
[2,3]. The effect of inclusions in multilamellar systems hasdiagram of the concentration of polymer lipids and the spac-
also been discussdd]. These membranes with inclusions ing between neighboring membranes, measured by experi-
are important not only theoretically, but also for many appli-ments[5]. Assuming that the sizes of defects in the multila-
cations, including the design of drugs. mellar phase do not depend strongly on the spacing between
Recently, an interesting observation has been made fareighboring membranes, we roughly determined the defect
multilamellar lipid membranes with long polymer lipids in structures and estimated the volume fracti¢d§ In this
both bilayers, and it was found that the viscoelastic propertheory, we assumed that the complicated structures of the
ties of the system change from those of a fluid to those of aefects act as bridges, connecting many membranes, and that
gel when the concentration of polymer lipids and the wateithe transition from the fluid phase to the gel phase takes
fraction satisfy a certain conditid®]. The substances in this place when the regions connected by the defects occupy
gel state are called “biogels[5] or “hydrogels” [6]. The nearly the entire system, as in the case of percolation phe-
transition points to the gel state depend on the concentratiomomend 8]. When the concentration of polymer lipids is too
of the intercalated polymer lipids in the membranes and théigh or the spacing between membranes is too large, the
distance between neighboring membranes in the multilamebinding force between membranes due to defects decreases,
lar phase. Increasing the water fraction under a constant coand the defects begin to move as vesicles. In this case, the
centration of polymer lipids, the fluid lamellar phase presensystem is considered as an assembly of vesicles and lamella,
at low water fraction changes to a gel phase at a criticahnd has a fluid viscosity.
water fraction. Increasing the water fraction further, the gel Although defect structures in the multilamellar phase play
phase eventually disappears as a fluid phase reappears. Sircerucial role in gel formation, three-dimensional structures
a high water fraction implies a large spacing between neighand size distributions have not been elucidated either experi-
boring membranes, we can say that the system is in the fluithentally or theoretically. In this paper, we study the shapes
lamellar phase when the spacing is small, and that the gelf membraneqstrings in two-dimensional space. Such a
phase appears when the spacing is in a certain range. Whegstem can be considered as a two-dimensional slice of a
the spacing exceeds this range, the viscoelasticity of the sy$hree-dimensional structure. As a first approximation of mul-
tem again becomes fluidlike. A similar behavior is observedilamellar systems, we describe the shape transformation of
when the concentration of polymer lipids is gradually in- one lipid membrandstring with polymer lipids subject to
creased from a low value. At low concentrations of polymerlateral tension. If we assume that neighboring membranes
lipids, the state is in a fluid lamellar phase, but, upon increasexert repulsive interactions, shape fluctuations in the direc-
ing the concentration, it changes to a gel phase at a criticdlon normal to the membrane increase the interaction energy
point and remains in the gel state over a certain range of theetween neighboring membranes. This energy increase can
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be interpreted as lateral tension in the membrane. If each
membrane fluctuates with weak correlation, and the fluctua-
tion is small compared to the average spacing between
neighboring membranes, a one-membrane system with lat-

eral tension is derived as a kind of mean-field approximation. %, oS
Since neighboring membranes are strongly correlated in @”’ZZH".““;‘V
some cases, and the shape transformations become large, this Sl
one-membrane approximation is not appropriate for these C

cases, but we believe that the elucidation of the natures of the
one-membrane system is an instructive and helpful first step F|G. 1. Schematic representation of the lipid membrane with
in determining the defect structures in multilame”ar System5p0|ymer ||p|ds The membrane is Composed of bi|ayers’ where ||p_
Experiments with the one-membrane system applying a tends with long polymers are contained in each layer. The concentra-
sion can be done by controlling osmotic pressure. tions of polymer lipids in the two layers are denoted pyand .
One-membrane systems with two order parameters geneThe tension at either end of the membrane is writtenraghe
ate a so called “curvature instabilityT9,10], and in this shape of the membrane is described by the tangential angle
context lamella and vesicles have been studied extensiveBach position along the membrane, parametrized. by
[11-13. In this paper we investigate the effect of lateral
tension and the presence of polymer lipids on the shapsions to study shape transformations. With this one-layer
transformations of flat membranes, using finite-temperaturenembrane model, it is not possible to observe the defect
Monte Carlo simulation§14] and an analytic study. We find structures found in multilamellar systems, but this model is
that when the concentration of polymer lipids is small, onlymore tractable than a multilamellar model and relatively eas-
thermal fluctuations of membranes are observed, but, at iy studied in detail. This study is instructive in understand-
certain concentration, a small number of largely deformedng the phenomena displayed by multilamellar systems. As
parts appear. This appearance is considered as correspondmgntioned below, a membrane with external tension on both
to defect structures in multilamellar systems. Increasing thends is a kind of mean-field approximation of multilamellar
concentration further, the locally deformed parts extend, andystems with a repulsive interaction between neighboring
the membrane exhibits a uniform undulation over the entiranembranes, like steric interactiph5—17] of thermally fluc-
area. At a higher concentration, the membrane changes totaating membranes. When a repulsive interaction is consid-
flat shape because of the large effective bending coefficienered, and there is assumed to be only weak correlation be-
Under a constant concentration of polymer lipids, the memiween neighboring undulating membranes, each undulating
brane shape is changed by the lateral tension. Decreasing theembrane possesses more energy than would a flat mem-
tension from a large value, the flat membrane changes tbrane, because the effective distance between neighboring
exhibit an undulating shape at a certain tension. Further denembranes decreases and repulsive force becomes stronger.
creasing the tension, some part of the membfat@g be-  This excess energy due to the undulation can be regarded as
gins to touch other parts of the membrane. In the simulationthe effective lateral tension exerted on the two ends of the
this situation is meaningless, but we conjecture that vesiclesiembrane. In general, this effective lateral tension depends
become stable near this point in multilamellar systems. Then the shape of the membrane, but we assume it to be con-
phase diagram obtained for the membrane corresponds wedtant. This mean-field approximation is only appropriate
to that obtained by experiments on real “biogels]. when the amplitude of the undulation is small compared to
In Sec. I, we define the free energy of a one-lipid mem-the average distance of the neighboring membranes. Experi-
brane with polymer lipids subject to lateral tension. In Sec.mentally, this tension can be realized through manipulation
[ll, we discuss the linear stability of the flat membrane andof osmotic pressure.
the effect of thermal fluctuations. We derive the parameter As shown in Fig. 1, we consider an incompressible lipid
regions in which the undulation due to the instability is membrane(string of length L, which experiences a lateral
larger than thermal fluctuations. The results of Monte Carlaension = at either ends. The membrane is assumed to be
simulations are summarized in Sec. IV. We find three chareomposed of two layers, and a certain concentration of poly-
acteristic undulating shapes. In order to analyze the undulatner lipids is desolved in each layer. The polymer lipids can
ing membranes, we use a single-mode approximation for urfreely diffuse within each layer, but they cannot move be-
dulating membranes and determine the amplitudes ofween layers. The concentrations of the polymer lipids in
undulations and the wave numbers in Sec. V. We restrictedach layer are denoted by and{. The shape of the mem-
the amplitude so that it would not exceed a certain valuebrane(string) is described by the tangential anglés) at the
because larger values correspond to the situation in whicpoint s which is the distance measured along the membrane
one part of the membrane contacts another part. Combininfjom one end. The free energy of the membrane is expressed
this condition and the results obtained in Sec. Ill, we deterby the following equation, using the Helfrich free energy
mine the parameter region in which the undulating mem{18]:
branes are observed. These results are compared with those
obtained in the Monte Carlo simulations. JL( K<a@)2 D(an>2 D( 05)2

2

as

2

2

Il. MODEL SYSTEM 0 Js Js

In this section we define a mathematical model of a one- de
- : L i —A({—n)—+h(np)+h : 1
layer lipid membrane subject to lateral tension in two dimen- (&= as () ({)] ds D
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Here k is the bending modulus, and the first term expresseparameter region of the curvature instability fgg and 7. A
the bending energy. The second and third terms are the eflat membrane is defined by=0, = 7y, and (= 7,. De-
ergies arising from the gradients of the polymer lipid con-viations from a flat state are represented by the following
centrations. The coupling between the curvature and the corf~ourier series:

centrations of polymer lipids is given by the fourth tef.

This coupling term exists because the long polymer parts of *

the polymer lipids “prefer” a curvature, because a larger 0= 2 {@suSiN(kpS) + @cnCOLkpS)}, (6)
spacing is entropically favorable for the long polymgtS]. m=1

The fifth and sixth terms represent the repulsive interactions "

between the long polymers in each lay20,21. This inter- _ .

action prevents the concentration of polymer lipids from be- = 7’°+mE:1 {75rSiNknS) + 76nCOSknS) 1, (7)
ing too high in any curved region, where polymer lipids tend

to gather. There are additional conditions regarding the con- o

servation of polymer lipids as well as a boundary condition =yt i + .

which defines the direction of the membraisering. These £= 0 mE:l arSiNtk) + LonCOS k) ®

conditions are written as
After substituting Eqs(6)—(8) into Eq. (4), and including

L L only up to second order terms in the Fourier expansion of
Jo n(s)ds= fo {(s)ds= oL, (@ each coefficient, we obtain the free energy as
L Lo [(x 1
f sing(s)ds=0, ©) H=3 2 Ekfn(gongr qogm)) +§[Dk§1+ h"(n¢)]
0 m=1
2 2 2 2

where 7, is the average concentration of polymer lipids in X (Dsmt emt LsmT Lom) T AKn(Lsm= 7sm) Pem
each layer. If we assume a periodic boundary condition, -
@(L+s)=¢(s), then the boundary condition in E(J) is — AKp(Lem— Tem) Psmt §(¢§m+ ¢§m)}. 9
automatically satisfied, and the free energy of the membrane

with tensionr is given b
T y The stability of modem is determined by the eigenvalues

L obtained from the following eigenvalue equation:
H=F—rf cosp ds. (4)
0 N2—=\{(k+D)K2+h"(5)+ 7+ + (kkZ+ 7) (D2 +h"(70))

There are additional conditions on the polymer lipid con- —2A2K2=0 (10)
centrationsy(s) and(s) which must be taken into account mo

when_ the average concentratigp is small. Sl_nce eaqh poly- If one of these eigenvalues is negative, this mode is unstable.
mer lipid has a tendency to move to a region of higher CU"rhe modem is unstable when the tension satisfies the
vature as a result of the interaction between the lipid and th?el ation

curvature, the concentrations of polymer lipids in low curva-
ture regions decrease and become nearly zero in some cases.
However, the concentration cannot be negative. Thus we
must add the following conditions to obtain the minimum
value of the free energh:

2A%KZ,

r< -kt ——
™ DKZ+h"(70)

(11)

Maximizing the right-hand side of Eq11) with respect to
the wave numbek,,, we obtain the unstable region for pa-
rametersr and 7, as

7(s)=0 and ({(s)=0. (5)

Il. LINEAR STABILITY AND THERMAL FLUCTUATION

2
In the formula of the free enerd¥q. (4)], the parameter 7-<A—2
A represents the strength of the coupling between the curva- D
ture of the membrane and the polymer lipid concentration.

When A is larger than a certain value, polymer lipids move The mode which becomes unstable first as the tensien
to regions of larger curvature, and the curvatures of thesgecreased from a large value is written as

regions grow more. This is the curvature instability men-

tioned above. In this section we determine the parameter

N s

e 12

2 " ”
regions in which undulation of the membrane due to the kZZA_ M J2— A /M) (13
curvature instability is observed. This region changes due to * D« A2 A?
the presence of thermal fluctuatiofexisting when the tem-
peratureT >0). where A2/ kh"(7)>3% must be satisfied.

As a first step, we investigate the case without thermal As the next step, we consider the effect of thermal fluc-
fluctuations T=0). In this case, using the free enefdyg.  tuations on the curvature instability. When the concentration
(4)], the linear stability of a flat membrane determines theof polymer lipids g is extremely small and the temperature
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T is finite, thermal fluctuations of polymer concentrations arein the case that/LA,/27,>1 is satisfied,T,, is approxi-
enhanced, and a fluctuating flat membrane is observed evenated byT,,~ \/7 if 0=< @< (2A,,/AkKy) 770 or by T,;=0 if

if there are unstable modes in the system, because ampli2A,,/Ak.,) 7,<¢. The partition functionZ., can be esti-
tudes corresponding to unstable modes are small, and thgated by

localization of polymer lipids is not favorable entropically.

On the other hand, when the concentration of polymer lipids (2An 1 Akm) 7m0 L A2k2 277
7o is not small, the entropy effect is less important, and the Zcmzf de exp — 2 Bn= A 2A LA
. . 0 m
amplitudes of unstable modes increase. In these cases, undu- (21)

lations of membranes are realized in some parameter regions.
We discuss the thermal fluctuations of flat membranes imhe average amplitude of fluctuatioq%m is calculated by

thermodynamic equilibrium. The partition functiahis de-
fined as

Z=> exp(—BH), (14)

where the summation is taken over all possible states, and we

use the measure

_1;[ jd‘Psmj d‘Pch'dnsmfdncmf dgsmf dlcm-

(19

Since the conditiong(s)=0 and{(s)=0 must be satisfied,

as an approximation, we use the measure

70 70 70 70
d’?st dnch dgsm dgcm- (16)
) — 70 70

The part of the partition functioZ associated withp,, is
written as

70 70
Zcm:f d@cmf dnsmf dlsneXp(— BHcm),
— 70 — 70
(17

whereH,,, is the energy associated with th@h mode¢,,
and B=1/kgT (kg is the Boltzmann constant and is the
temperature This partition functionZ.,,, is expressed as

Lem= Jimd(P ex _EBm‘P
([t Sad e
nexpg—5 /A o/} )
— g 2" Am

(18)

where A, and B, are defined b)Am=[Dkﬁ1+ h" (7112 ,
and andBmz(kanJr 7)/2 . In Eq.(18), B is absorbed into
each parameter, A, x, D andh”. The partition function
Z.m is modified as

" L A%, 2
Zem= fo @ ex _E Bn——%— oA, KT (29
whereT,, is defined by
Amf2[ 70~ (Akm/2Am)| @[]
f dx exp(—x?). (20
[LAM2L 70+ (Ak/2Am) | ]

the partition function Eq(21) as

Xm
j x2exp( — ax?)dx
0

> 2

<‘Pcm>: A2k2 X ’ (22)
LIBy,— — fmexp(—axz)dx
mo2A, 0

whereX,, is defined by
« —JHg A2C[2A,, .
m= V3B~ 28 Ak, 7 (23
and « is the sign of B,—(A%K2/2A,). When B,

—(AzkﬁqIZAm)BO andX,>1, the energy of thenth mode
becomes

L

2 Bm”

This relation implies the equipartition of energy. WhBp
— (AK2/2A,,) <0 is satisfied, thenth mode is linearly un-
stable, and the energy of the unstable mode is estimated as

A%K2,
2A.,

1
<@cm>_§' (24)

m
B
and the amplitude is written by
2An\2
2 m
=|—— 26
(@em) ( Ak, (26)

In order to estimate the parameter region in which the
curvature instability is observed, we assume the following
three conditions. First, we assume that the undulation caused
by unstable modes can be described by a single mode. This
is the single-mode approximatidd3]. Second, we assume
that the amplitude of the unstable mode can be calculated
from the partition functiorfEqg. (21)] when the instability is
not strong. Third, as the observability condition of the un-
stable mode, we assume that the energy gained by the un-
stable mode is comparable to or larger than that of other
thermally fluctuating modes. Then the number of thermally
fluctuating modedm is AkL/27, whereAk is the length of
the interval corresponding to stable wave numbers. Since the
energy of one stable mode is 1/2 by equipartition of energy,
the condition that the unstable mode can be observed is ex-
pressed by

(27)



This relation can be written as
2

A

2A, m

2An,

Ak, 70 (28)

2
) =C,

where C is a certain constant. As the observable unstable

mode, we choose the modtg given by Eq.(13). Then the
observability condition of the unstable mofeq. (28)], is

written as
hl! h//
o e
EPLRSY AN
"AZ7 N wh(n) )]

(29

—=<
TAZ

where the temperature dependence of each parameter
x, D, andh” is explicitly represented. The observability con-

dition [Eq. (29)] can be considered as a relation between th{

tension = and the polymer lipids concentration,, and is

depicted in Fig. 8 in Sec. V. This condition describes the

results of Monte Carlo simulations quite well.

IV. COMPUTER SIMULATION

In this section, we give numerical results obtained by
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FIG. 2. Phase diagram obtained by Monte Carlo simulations for
A=2 andk=D=a=b=1. The rescaled tensiorD/A? is plotted
as a function of the rescaled polymer lipid concentration
70(D/«)Y2. The regions fromA to F correspond to different char-
acteristic shapes of the membrase.Thermal fluctuationsB: Lo-
calized large deformationsC: Undulation over the entire mem-
brane.D: Domain structures of undulatiok: Winding structures.
: Stable flat membrane. The boundaries betwéeand F and
etweenA andE are not drawn in this phase diagram.

In order to minimize the free energy expressed by Eq.
(32), we used the following Monte Carlo scheme. We di-
vided the membranéstring of length L into N segments
represented b\ points, and discretized the variables 7,
and ¢ at each point. To change, we chose two points and

Monte Carlo simulation for the model defined in Sec. Il. Thethen changed the valugsat these points by small quantities
model equations used for simulations can be simplified by0 as to satisfy the boundary conditigq. (3)]. For  and

the following rescaling:

(30

If we assume the energy expression

h _3 2.0 31
(”)_§”+Z’7’ (31)

{, we used Kawasaki dynami¢&2], which consists of the
exchange of small amounts of polymer lipids between two
neighboring points. In order to perform finite-temperature
simulations, we adopted the Metropolis method to determine
whether the new state is accepted. The new values, of,
or { are accepted if the energy of the new state is smaller
than that of the old one, i.eAF is negative. IfAF is posi-
tive, the new state is accepted with the probability
exp(—AF/kgT). One Monte Carlo step is composedNfri-
als for each variable, 7, and{. These Monte Carlo steps
continue until the system is considered to be in equilibrium.
In our simulationdN =256, and the number of Monte Carlo
steps is 10

The results of the Monte Carlo simulations are summa-
rized as follows. The parameters were fixed @asD=a

for the polymer lipid free energy, the total free energy of the=b=10KgT and A% xa=4. Varying the average concen-

membrane is described by

,_1JL 1 (a¢')2+<an’)2+(ag’)2 " ,)«3<p’
9 L o|2]\ g8’ Js' Js’ 7 9s’
Kxa 77/2+§/2 xb 77’4+§I4 , , ,

P > Da 1 —7'cosp’ |ds'. (32

In this expressionga/A? andxb/Da are two dimensionless

tration 7 and tensionr, we sought the equilibrium states
and plotted them in a phase spafEig. 2) defined by
70(D/ k)2 and 7D/A2. The following six characteristic
shapes were observed.

(1) A thermally fluctuating flat membrane found in region
A of Fig. 2 Slow thermal fluctuations are observed in this
region, but regular undulation is not observed. As reflected
by the power spectrum of, the amplitudes of unstable
modes are not large, compared with those of thermally fluc-
tuating modes. This fluctuating membrane appears when the

parameters which characterize the system. The first paranaverage concentratio, of polymer lipids is very small.

eter ka/A? represents the strength of curvature instability,

and the second parameteb/Da determines the amplitude
of ¢(s) and5(s). For convenience, we omit the symbobn
each variable in Eq32) from this point.

Since the concentrationg is small, the strength of unstable
modes cannot develop, and thermal fluctuations dominate the
system.

(2) Localized large deformationgig. 3 found in region
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z(x,t): TD/A*=0.1 ny(D/x)"* =02 z(x,t) : TD/A? = 0.375 1o (D) = 0.6
10°F T — 10°F NAAAAAAAAAAAAAAMAAA AN
T U — A AN ——

A MNANANANNAANANANAANNAAANANNN AN
I T vy N A o | ST
A A A - =1 VMMMV
3| ST o S| ey
N NN o N N N e U N T ey AANAANNANNNANANNANNANANANANANNNANAS
AR A A AN AR A MMM
\/\W\W\M\/\_’ \/\/\f\/\/\/\M/\./\/\/\/\_/\/W\/\/‘\N\/\M/
N TN N e W AU e T P P P NS N N
PSSt INE | [U MV { 10
f - h - ) - ; - Z 0 |W\T\N\/IVVV|\AN\IM,V|V\A/}N\I:/\N| 0 Z
L — ) 20 0 20 20 0 40 20 0 20 40
(a) space x space X

) » FIG. 4. Undulation extended in the entire area of the membrane
NG,y : /A" =0.1 1o (D)™ =0.2 found in regionC of Fig. 2. The shapes of the membrane are drawn
for times 5000, where i=1,2,...,20. Here we haverD/A?

10°F y’hﬁ N '\' A"” /\ ‘w ;g.g,zesra;ﬂgngaltjir/ex)alr’::.o.& The membrane is uniformly undulat-
- A'A',"" Y

A A (\ﬁg,. AV (5) The winding membrane found in regidh of Fig. 2.
\Aﬁﬁﬁﬁﬂf Here the amplitude of the undulation becomes very large,

H A .M NWM and some parts of the membrane contact or cross other parts.

WWMVM\W This situation is meaningless in our simulation scheme.

WWVVW (6) The flat membrane with no fluctuation found in region
WWHW“U ~T1n F of Fig. 2. In this region, the flat membrane is not unstable
1 1
20 0

05— —40 8080 100 with respect Fo any mode. _
(b) § If we consider our one-membrane model as one kind of a
mean-field model for multilamellar systems, the tensios
‘understood as arising from the repulsive interactions between
. neighboring membranes in multilamellar systems, ari-
7o(D/x)"*=0.2. Other parameters are fixed As=2 andk=D 10 roughly proportional >~ 2, whered is the spacing
=a=b=1. (8 The actual shape of the membrane is drawn as g .\ "o membranes, andis some positive number
function of time. The initial shape is flat, and the time interval o L . X .
between each shape drawn in the figure is 5000 Monte Carlo step. .hen the_ repulsive interaction is proportlt_)naldo ) USI.ng .
(b) The development of the polymer lipid concentratigis) is this relation, vye can redraw the phgse diagram of F|g 21n
shown. In the shape of the membrane displayedain there are  the space defined by the concentration of polymer lipjgs
several localized undulations. Polymer lipids are also concentrate@nd the average spacimgbetween neighboring membranes.
here. The concentration of polymer lipids in the nearly flat parts isThe phase diagram so obtained has a structure quite similar
almost zero. to that in the phase diagram measured by experimits
From this fact, we conjecture that a certain kind of strong

E?

FIG. 3. The shape of large localized deformations in the mem
brane found in regiol® of Fig. 2. Here we haveD/A?=0.1 and

B of Fig. 2. Here the concentrations of polymer lipigsand

£ are strongly localized in several areas, and large deforma- 2(x,0) 1 TD/A’ = 0475 1 (D) = 0.6
tions of the membrane appear there. Both the concentration 10°

profile » and the shape of the membrane are shown in Fig. 3. T T T T
When the concentration, is relatively small, decreasing the ISR
tension7 from a large value, the flat membrane changes to RSO AAS

exhibit weak undulation, and the undulation grows in several
areas to become large localized deformations. Since the en-

time t

ergy gain due to the coupling between the curvature and the REERSAAAA SO
polymer lipids is very large in the strongly deformed parts of ERAAA NS
the membrane, polymer lipids gather there from neighboring AV ET)
regions until no polymer lipids remain in these regions sur- T T 0 Z
rounding the localized deformations. 070 20 0 20 40

(3) The undulation of the entire membraffg. 4) found Space X

in regionC of Fig. 2. In this region, the regular undulation £, 5. Domain structures of undulation found in regibnof
caused by the curvature instability extends over the entirq:ig. 2. The rescaled parameters satishD/A%=0.475 and
area of the membrane, and does not fluctuate in time. n0(D/x)Y2=0.6. The shapes of the membranes are drawn at time

(4) Domain structures of undulating membran€83. 5  intervals of 5000 time steps. The sequence of the membrane shapes
found in regionD of Fig. 2. The membrane is separated into shows that there are two different kinds of regions in the membrane.
several undulating domains which do not merge with eactbne is an almost flat region, and the other is an undulating region.
other in this region. The boundaries between the two regions move slowly.
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' ' J ' T ' power spectrum ob. Figure 7 shows that the wave number
of the undulation does not depend strongly on either the
concentratiorny of polymer lipids or the tension, except in

the case that the tension is small. The broken line in Fig. 7
represents the mode, given by Eq.(13), which first be-

TD/A” ] comes unstable when the tension is decreased from a large
ool ] value. We can say that the broken line gives the upper limit
—4—0.375 | of the characteristic wave numbét,,, obtained through
ol ] simulation and that the wave number of undulatigR, is
] nearly equal tk, , given by Eq.(13).
02 04 06 08

1”2 V. SINGLE-MODE APPROXIMATION
No(D/x) , . :
In this section we analyze a membrane possessing undu-

FIG. 6. Average amplitude of the tangential anglgp?) calcu-  lation using the single-mode approximatiph3], which is
lated from the results of Monte Carlo simulations as a function ofthe assumption that the shape of an undulating membrane
70(D/x) "2 The data are plotted for cases in which the membraneaused by the curvature instability is approximately charac-
is undulating or thermally fluctuating. Under constant tension, theerized by only one unstable mode. From the fact that the
amplitude grows with increasingy. polymer lipids concentration; and ¢ are both positive, we

find that there are two kinds of solutions resulting from the
undulation in the one-membrane model corresponds to 8ingle-mode approximation, depending on the polymer lipid
state which contains many connected defects in multilamelconcentrationy, and the tension. When the concentration
lar systems, and that weak undulation in the one-membrango and the tension are near the critical line of the instabil-
system corresponds to the similar undulation in multilamellaity, the instability is weak, and the following type of solution
systems. (type A) can be assumed:

In Fig. 6, the average amplitude of the tangential angle

W(¢?) is plotted. This quantity was calculated from the ¢(s)=A cogks), (33
simulation results as a function ofy(D/«)Y? in the case L

when the membrane displays undulation. From the figure, 7(s) =B sin(ks) + 7o, (34)
the average amplltudé(goz) grows almost linearly, causing £(s)= —B sin(ks)+ 7p. (35)

the concentrationy, to increase under the constant tension

2
7D/A”. The growth rate of/(¢°) becomes large when the gre A andB are the amplitudes of the tangential angle

tension7D/A? is small. This implies that large deformations and the concentratiom. This solution is valid only when
take place by adding a small amount of polymer lipids when

the tension is small. ——7T
We also calculated the, dependence on the wave num- !
berk of undulation from the simulations. This result is given 0.8 A=2 x=D=1

in Fig. 7. The characteristic wave numbeg,, was obtained
numerically as the mode with the largest amplitude in the

02 04 08 03

no(D/K)"?

FIG. 8. Phase diagram calculated using linear stability analysis
and the single-mode approximation. The rescaled tensini ? is
plotted vs the rescaled polymer lipid concentratiggD/ )2 All
) ) | ) . , parameters are the same as those in Fig. 2. The broken line is the
0.2 04 0.6 0.8 critical line of instability given by Eq(12), and the solid line is the

noD/" theoretical estimate given by E(R9), which represents the condi-
tion that the amplitude of an unstable mode becomes larger than

FIG. 7. Rescaled characteristic wave numkigr(D«/A%)Y¥?as  that of thermal fluctuations. We set the paramésen Eq. (29) as
a function of the rescaled polymer lipid concentratigg(D/ «) 2. C=0.01kgT. The line with circles represents the boundary on
The characteristic wave numbley,, represents the strongest mode, which the amplitude ofe becomes 1.42. Corresponding to the
with the maximum amplitude ap, measured from the power spec- phase diagram shown in Fig. 2, characteristic shapes of the mem-
trum for @. When 7,(D/«)*?<0.2, the membrane is thermally brane are found in the regiods C, E, andF. A: Thermal fluctua-
fluctuating. k.« does not depend strongly omg. Except for  tions.C: Undulation over the entire membrarte: Winding struc-
D/A?=0.1, definiter dependence df,,., is not seen. tures.F: Stable, flat membrane.
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B< 7, is satisfied. Substituting Eq&33)—(35) into Eq.(32),
the free energy is described as

1
9= ;K°A°~kAB

1 1 27
“K2R24
+2kB+27J0

D \/? ]
ZPh B(BSIHX+ 7o)

(36)

—7C0gA cos<)} dx.

The values ofA, B, andk are determined to minimize the
free energy[Eq. (36)]. FIG. 9. Average amplitude of the tangential angigp?) as a

In the case when the parametegsand r are far from the  function of the rescaled concentratiag(D/x)Y?, calculated using
critical line of the instability, the instability becomes rela- the single-mode approximation of type B. Nearly linear growth is
tively strong. In this case, the concentration of polymer lipidsseen wheny, is small. This figure should be compared with Fig. 6.
becomes very large in regions of large curvature, and almost
zero in other regions. Therefore, in these parameter regions,

we can approximate the solution by the following piecewise- (43

27 (w2
- —J cog A cox)dx.
T Jo

continuous solutioritype B):

¢(s)=A cogks), 37
7(s)=ma}{ B sin(ks)+ 74,0], (38
Z(s)=max — B sin(ks) + 7,,0], (39

where maxx,y] represents the larger of the valuesandy.

When 7, and 7 are givenA, B, k, and», are determined by
minimizing the energyEq. (43)], with respect tdA, B, andk
under the conditions represented by E@$l) and (42),
which define the functiong,(B, 7o) andy(B, 7).

From numerical calculations for solutions of types A and
B, we find that type A solutions exist only quite near the
critical line of instability, and that almost all solutions in
other regions of instability are of type B. In Fig. 8, we draw

This solution is supplemented by the conservation of polyihe parameter regiongegionsA andC in Fig. 8 in which

mer lipid concentration, expressed by

L

1
no=<n(5)>=[f 7(s)ds. (40)

0

Substituting Eq(38) into Eq. (40), this conservation is re-

written as
T w Mo
a7 5yel 1]

wherey is introduced byy=1-2ks,/m, ands; satisfies
B sin(ks))= »;. Using the variabley, this definition fors; is

equivalent to
cod—y|= 1
2Y]" B

Substituting the assumed solutipigs. (37)—(39)] into Eq.
(32), the free energy is calculated as

(41)

(42

1
— T L2p2
g 4kA+

1 y sin(my)
_ ~k2B2ili1-2
kAB+2kBH1 2+ =

K .
h( \/;(BSlnX—F 71)
1 [2yD \/? 5
“onle a2 p{—Bcos<+7,)

1 (=2 D

+ — I
2T 777/2A2 dx

dx

the solutions of types A and B exist. These regions are also
limited to those points for whichp<1.42. The boundary
representing the limit of the existence of stable solutions
(type A or B) coincides with the critical line of the curvature
instability, given by Eq.(12). The line satisfyingA=1.42
corresponds to the boundary at which the undulation solution
changes to a winding solutioffior which some parts of the
membrane touch other partas determined by the shapes of
strings obtained through Monte Carlo simulatiofBaram-
eters values here ard=2,«x=D=a=b=1, and 1KkgT
=100) From these observations, we can conclude that the
following two conditions determine the parameter region in
which undulating membranes exi¢t) The amplitude of the
unstable mode is larger than the amplitude characterizing
thermal fluctuations(2) A solution found from the single-
mode approximation exists, and the amplitude of the tangen-
tial angle ¢ is smaller than a certain valu@ this cas€ ¢|
<1.42). Comparing Figs. 2 and 8, the regi@enoted a<

in Fig. 8 which satisfies these two conditions corresponds
well with the regiongdenoted a$8, C, andD in Fig. 2) in
which undulation of membranes are found in Monte Carlo
simulations.

In Fig. 9, we show the relation between the amplitudes
V(@?) of tangential angles for solutiongype B) and the
polymer lipid concentratiomyo(D/«)*2. As 7, is increased
with constant tensionrD/A?, \(¢?) increases monotoni-
cally, and almost linearly whenq(D/ )2 is small. Figure 9
corresponds to Fig. 6, which was obtained from the results of
Monte Carlo simulations. Since the solution obtained in the
single-mode approximation does not include effects of ther-
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0.8 . . . . . . . lipids as a kind of approximation of multilamellar systems.
L | Using Monte Carlo simulations, we found several character-
0,600 b BDBLSDALSLDDL LA ] istic shapes of the membrane, including localized large de-

formations and regular undulations. We used the single-

EA ) mode approximation to analyze the undulations of the
é. 0.4 000000, TD/A” membrane, and found that the results obtained by Monte
a —*0.1 ] Carlo simulation can be explained well with the theory de-
0ok “A-{)Dggs ) rived from this approximation. The region in which the un-
) —-0-4.5 dulation is observed in the membrane is restricted by three
——.625 ] conditions:(1) the curvature instability exist$2) the insta-
012 . 014 . 016 —0.8 bility is stronger than thermal fluctuations, a8} the insta-
no(D/)"”? bility is not so strong that some parts of the membrane touch

other parts. The phase diagram in the space of the polymer
FIG. 10. Rescaled wave numbiefD «/A2)Y2 as a function of  lipid concentration and the tension determined by the simu-
the rescaled polymer lipid concentratigg(D/ )2 obtained using lations has a structure quite similar to that observed in ex-
the single-mode approximation of type B. The wave number isperiments on “biogels’{5]. This result indicates that defects
nearly independent of the concentratigg, but a slight depen-  found in multilamellar systems correspond to certain kinds
dence is found, especially for smail This figure should be com- of strong undulations of a single membrane with tension.
pared with Fig. 7. Since the undulations occur as a result of the curvature in-

stability, we conjecture that the complicated defect structures

mal fluctuation and localized structures which are observeg, “biogels” [6] are also caused by the curvature instability
in Monte Carlo simulations, the average amplitudés) in  \hich results from the interaction between the polymer lip-
the figures do not correspond precisely, but the global teNys and the curvature of the membranes.

dencies are very similar. In our model, when the concentration of polymer lipids is

thelT/v(;?eeaLomcﬁgiﬁt?ggigruiiggg(glagolg), g)eta?:]s; dﬁﬁligg"teauite small, thermal fluctuations dominate, and undulation
yp cannot be observed. This fact corresponds well to the fact

single-mode approximation, and plotted them with respect t?hat only a small number of defects can be observed in “bio-

the polymer lipid concentrationyo in Fig. 10. From thlst gels” when the polymer lipid concentration is small. These

figure, we find that the wave numbleiis almost independen h | defect b derstood " fect di
of the concentratiory,, and that ther dependence is also ermal defects can be understood as an entropy efiect dis-
cussed in a previous papgf].

small when~ is larger than a certain value. This behavior i i
was also observed in the Monte Carlo simulati¢ese Fig.  SInce our model is a one-membrane system, we cannot
7). In the Monte Carlo simulations, the tensiomdependence discuss defect structures found in multilamellar systems, but
seems smaller than that seen in the single-mode approxim¥€ can conclude that the three conditions mentioned
tion. According to the good correspondence between Figs. éibove—curvature instability, fluctuations and vesiculation—
9, and 10 and Figs. 2, 6, and 7, we can conclude that thBlay important roles in defect formation in multimembrane

single-mode approximation is quite adequate in describin§ystems. As shown by direct observati¢f the connectiv-
the undulation of membranes. ity between vesicular defects is considered to be the cause of

gel viscosity in “biogels.” To observe the defect structure in
multilamellar systems is quite important. Such work is now
in progress using Monte Carlo simulations, where defect

In this paper, we studied the shape transformations of atructures similar to those observed in experiments have
one-lipid membrane system with lateral tension and polymebeen found under suitable conditiof3].

VI. CONCLUSION
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