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Curvature instability in fluid membranes with polymer lipids subject to tension

T. Kohyama
Faculty of Education, Shiga University, Otsu 520, Japan

~Received 20 August 1997!

Shape transformations of a flat fluid membrane with polymer lipids subject to lateral tension are studied as
an approximation for multimembrane systems. Using Monte Carlo simulations, we find several characteristic
structures of membranes, such as thermal fluctuations, large localized deformations, and undulations due to a
curvature instability. The effect of thermal fluctuations on the curvature instability is investigated, and the
undulations are characterized by a single-mode approximation for unstable modes. It is shown that thermal
fluctuations, the curvature instability and vesiculation determine the parameter region in which an undulating
membrane is observed. The phase diagram of undulation obtained through simulations closely resembles that
measured experimentally for ‘‘biogels.’’ This suggests that the undulation corresponds to defects in multimem-
brane systems and that the curvature instability is the main cause of defect formation in ‘‘biogels.’’
@S1063-651X~98!16105-6#

PACS number~s!: 68.10.2m
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I. INTRODUCTION

Complex properties of fluid membranes composed of a
phiphilic substances have attracted a great deal of atten
@1#. Fluid membranes, for example biological membran
often contain many kinds of polymer inclusions which
many cases affect the physical properties of the membra
such as elasticity. The effects of polymer inclusions in flu
membranes have been studied extensively, and the inte
tion between inclusions has been analyzed theoretic
@2,3#. The effect of inclusions in multilamellar systems h
also been discussed@4#. These membranes with inclusion
are important not only theoretically, but also for many app
cations, including the design of drugs.

Recently, an interesting observation has been made
multilamellar lipid membranes with long polymer lipids i
both bilayers, and it was found that the viscoelastic prop
ties of the system change from those of a fluid to those o
gel when the concentration of polymer lipids and the wa
fraction satisfy a certain condition@5#. The substances in thi
gel state are called ‘‘biogels’’@5# or ‘‘hydrogels’’ @6#. The
transition points to the gel state depend on the concentrat
of the intercalated polymer lipids in the membranes and
distance between neighboring membranes in the multilam
lar phase. Increasing the water fraction under a constant
centration of polymer lipids, the fluid lamellar phase pres
at low water fraction changes to a gel phase at a crit
water fraction. Increasing the water fraction further, the
phase eventually disappears as a fluid phase reappears.
a high water fraction implies a large spacing between ne
boring membranes, we can say that the system is in the
lamellar phase when the spacing is small, and that the
phase appears when the spacing is in a certain range. W
the spacing exceeds this range, the viscoelasticity of the
tem again becomes fluidlike. A similar behavior is observ
when the concentration of polymer lipids is gradually i
creased from a low value. At low concentrations of polym
lipids, the state is in a fluid lamellar phase, but, upon incre
ing the concentration, it changes to a gel phase at a cri
point and remains in the gel state over a certain range of
571063-651X/98/57~6!/6815~10!/$15.00
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polymer lipid concentration. At a higher concentration, t
viscosity of the system returns to that of a fluid. By x-ra
scattering methods@5#, some kinds of defects in the multila
mellar phase have been observed. These are thought to
an important role in the gel formation. Recent direct obs
vations employing freeze-fracture electron microscopy@6#
have clarified the defect structures. They have revealed m
complicated vesicular and cylindrical defects which are c
nected when the system is in the gel phase.

In a previous work, we theoretically described the pha
diagram of the concentration of polymer lipids and the sp
ing between neighboring membranes, measured by exp
ments@5#. Assuming that the sizes of defects in the multil
mellar phase do not depend strongly on the spacing betw
neighboring membranes, we roughly determined the de
structures and estimated the volume fractions@7#. In this
theory, we assumed that the complicated structures of
defects act as bridges, connecting many membranes, and
the transition from the fluid phase to the gel phase ta
place when the regions connected by the defects occ
nearly the entire system, as in the case of percolation p
nomena@8#. When the concentration of polymer lipids is to
high or the spacing between membranes is too large,
binding force between membranes due to defects decrea
and the defects begin to move as vesicles. In this case
system is considered as an assembly of vesicles and lam
and has a fluid viscosity.

Although defect structures in the multilamellar phase p
a crucial role in gel formation, three-dimensional structu
and size distributions have not been elucidated either exp
mentally or theoretically. In this paper, we study the sha
of membranes~strings! in two-dimensional space. Such
system can be considered as a two-dimensional slice
three-dimensional structure. As a first approximation of m
tilamellar systems, we describe the shape transformatio
one lipid membrane~string! with polymer lipids subject to
lateral tension. If we assume that neighboring membra
exert repulsive interactions, shape fluctuations in the dir
tion normal to the membrane increase the interaction ene
between neighboring membranes. This energy increase
6815 © 1998 The American Physical Society
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6816 57T. KOHYAMA
be interpreted as lateral tension in the membrane. If e
membrane fluctuates with weak correlation, and the fluct
tion is small compared to the average spacing betw
neighboring membranes, a one-membrane system with
eral tension is derived as a kind of mean-field approximati
Since neighboring membranes are strongly correlated
some cases, and the shape transformations become large
one-membrane approximation is not appropriate for th
cases, but we believe that the elucidation of the natures o
one-membrane system is an instructive and helpful first s
in determining the defect structures in multilamellar system
Experiments with the one-membrane system applying a
sion can be done by controlling osmotic pressure.

One-membrane systems with two order parameters ge
ate a so called ‘‘curvature instability’’@9,10#, and in this
context lamella and vesicles have been studied extensi
@11–13#. In this paper we investigate the effect of later
tension and the presence of polymer lipids on the sh
transformations of flat membranes, using finite-tempera
Monte Carlo simulations@14# and an analytic study. We find
that when the concentration of polymer lipids is small, on
thermal fluctuations of membranes are observed, but,
certain concentration, a small number of largely deform
parts appear. This appearance is considered as correspo
to defect structures in multilamellar systems. Increasing
concentration further, the locally deformed parts extend,
the membrane exhibits a uniform undulation over the en
area. At a higher concentration, the membrane changes
flat shape because of the large effective bending coeffic
Under a constant concentration of polymer lipids, the me
brane shape is changed by the lateral tension. Decreasin
tension from a large value, the flat membrane change
exhibit an undulating shape at a certain tension. Further
creasing the tension, some part of the membrane~string! be-
gins to touch other parts of the membrane. In the simulat
this situation is meaningless, but we conjecture that vesi
become stable near this point in multilamellar systems. T
phase diagram obtained for the membrane corresponds
to that obtained by experiments on real ‘‘biogels’’@5#.

In Sec. II, we define the free energy of a one-lipid me
brane with polymer lipids subject to lateral tension. In S
III, we discuss the linear stability of the flat membrane a
the effect of thermal fluctuations. We derive the parame
regions in which the undulation due to the instability
larger than thermal fluctuations. The results of Monte Ca
simulations are summarized in Sec. IV. We find three ch
acteristic undulating shapes. In order to analyze the undu
ing membranes, we use a single-mode approximation for
dulating membranes and determine the amplitudes
undulations and the wave numbers in Sec. V. We restric
the amplitude so that it would not exceed a certain val
because larger values correspond to the situation in w
one part of the membrane contacts another part. Combi
this condition and the results obtained in Sec. III, we de
mine the parameter region in which the undulating me
branes are observed. These results are compared with
obtained in the Monte Carlo simulations.

II. MODEL SYSTEM

In this section we define a mathematical model of a o
layer lipid membrane subject to lateral tension in two dime
ch
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sions to study shape transformations. With this one-la
membrane model, it is not possible to observe the de
structures found in multilamellar systems, but this mode
more tractable than a multilamellar model and relatively e
ily studied in detail. This study is instructive in understan
ing the phenomena displayed by multilamellar systems.
mentioned below, a membrane with external tension on b
ends is a kind of mean-field approximation of multilamell
systems with a repulsive interaction between neighbor
membranes, like steric interaction@15–17# of thermally fluc-
tuating membranes. When a repulsive interaction is con
ered, and there is assumed to be only weak correlation
tween neighboring undulating membranes, each undula
membrane possesses more energy than would a flat m
brane, because the effective distance between neighbo
membranes decreases and repulsive force becomes stro
This excess energy due to the undulation can be regarde
the effective lateral tension exerted on the two ends of
membrane. In general, this effective lateral tension depe
on the shape of the membrane, but we assume it to be
stant. This mean-field approximation is only appropria
when the amplitude of the undulation is small compared
the average distance of the neighboring membranes. Exp
mentally, this tension can be realized through manipulat
of osmotic pressure.

As shown in Fig. 1, we consider an incompressible lip
membrane~string! of length L, which experiences a latera
tensiont at either ends. The membrane is assumed to
composed of two layers, and a certain concentration of po
mer lipids is desolved in each layer. The polymer lipids c
freely diffuse within each layer, but they cannot move b
tween layers. The concentrations of the polymer lipids
each layer are denoted byh andz. The shape of the mem
brane~string! is described by the tangential anglew(s) at the
point s which is the distance measured along the membr
from one end. The free energy of the membrane is expres
by the following equation, using the Helfrich free energ
@18#:

F5E
0

L H k

2S ]w

]s D 2

1
D

2 S ]h

]s D 2

1
D

2 S ]z

]sD
2

2L~z2h!
]w

]s
1h~h!1h~z!J ds. ~1!

FIG. 1. Schematic representation of the lipid membrane w
polymer lipids. The membrane is composed of bilayers, where
ids with long polymers are contained in each layer. The concen
tions of polymer lipids in the two layers are denoted byh and z.
The tension at either end of the membrane is written ast. The
shape of the membrane is described by the tangential anglew at
each position along the membrane, parametrized bys.
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57 6817CURVATURE INSTABILITY IN FLUID MEMBRANES . . .
Herek is the bending modulus, and the first term expres
the bending energy. The second and third terms are the
ergies arising from the gradients of the polymer lipid co
centrations. The coupling between the curvature and the
centrations of polymer lipids is given by the fourth term@9#.
This coupling term exists because the long polymer part
the polymer lipids ‘‘prefer’’ a curvature, because a larg
spacing is entropically favorable for the long polymers@19#.
The fifth and sixth terms represent the repulsive interacti
between the long polymers in each layer@20,21#. This inter-
action prevents the concentration of polymer lipids from b
ing too high in any curved region, where polymer lipids te
to gather. There are additional conditions regarding the c
servation of polymer lipids as well as a boundary condit
which defines the direction of the membrane~string!. These
conditions are written as

E
0

L

h~s!ds5E
0

L

z~s!ds5h0L, ~2!

E
0

L

sinw~s!ds50, ~3!

whereh0 is the average concentration of polymer lipids
each layer. If we assume a periodic boundary conditi
w(L1s)5w(s), then the boundary condition in Eq.~3! is
automatically satisfied, and the free energy of the membr
with tensiont is given by

H5F2tE
0

L

cosw ds. ~4!

There are additional conditions on the polymer lipid co
centrationsh(s) andz(s) which must be taken into accoun
when the average concentrationh0 is small. Since each poly
mer lipid has a tendency to move to a region of higher c
vature as a result of the interaction between the lipid and
curvature, the concentrations of polymer lipids in low curv
ture regions decrease and become nearly zero in some c
However, the concentration cannot be negative. Thus
must add the following conditions to obtain the minimu
value of the free energyH:

h~s!>0 and z~s!>0. ~5!

III. LINEAR STABILITY AND THERMAL FLUCTUATION

In the formula of the free energy@Eq. ~4!#, the parameter
L represents the strength of the coupling between the cu
ture of the membrane and the polymer lipid concentrati
WhenL is larger than a certain value, polymer lipids mo
to regions of larger curvature, and the curvatures of th
regions grow more. This is the curvature instability me
tioned above. In this section we determine the param
regions in which undulation of the membrane due to
curvature instability is observed. This region changes du
the presence of thermal fluctuations~existing when the tem-
peratureT.0).

As a first step, we investigate the case without therm
fluctuations (T50). In this case, using the free energy@Eq.
~4!#, the linear stability of a flat membrane determines
s
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parameter region of the curvature instability forh0 andt. A
flat membrane is defined byw50, h5h0, andz5h0. De-
viations from a flat state are represented by the follow
Fourier series:

w5 (
m51

`

$wsmsin~kms!1wcmcos~kms!%, ~6!

h5h01 (
m51

`

$hsmsin~kms!1hcmcos~kms!%, ~7!

z5h01 (
m51

`

$zsmsin~kms!1zcmcos~kms!%. ~8!

After substituting Eqs.~6!–~8! into Eq. ~4!, and including
only up to second order terms in the Fourier expansion
each coefficient, we obtain the free energy as

H5
L

2 (
m51

` H S k

2
km

2 ~wsm
2 1wcm

2 ! D1
1

2
@Dkm

2 1h9~hc!#

3~hsm
2 1hcm

2 1zsm
2 1zcm

2 !1Lkm~zsm2hsm!wcm

2Lkm~zcm2hcm!wsm1
t

2
~wsm

2 1wcm
2 !J . ~9!

The stability of modem is determined by the eigenvalue
obtained from the following eigenvalue equation:

l22l$~k1D !km
2 1h9~h0!1t%1~kkm

2 1t!„Dkm
2 1h9~h0!…

22L2km
2 50. ~10!

If one of these eigenvalues is negative, this mode is unsta
The modem is unstable when the tensiont satisfies the
relation

t,2kkm
2 1

2L2km
2

Dkm
2 1h9~h0!

. ~11!

Maximizing the right-hand side of Eq.~11! with respect to
the wave numberkm , we obtain the unstable region for pa
rameterst andh0 as

t,
L2

D S A22Akh9~h0!

L2 D 2

. ~12!

The mode which becomes unstable first as the tensiont is
decreased from a large value is written as

k
*
2 5

L2

Dk
Akh9~h0!

L2 S A22Akh9~h0!

L2 D , ~13!

whereL2/kh9(h0). 1
2 must be satisfied.

As the next step, we consider the effect of thermal flu
tuations on the curvature instability. When the concentrat
of polymer lipidsh0 is extremely small and the temperatu
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6818 57T. KOHYAMA
T is finite, thermal fluctuations of polymer concentrations a
enhanced, and a fluctuating flat membrane is observed
if there are unstable modes in the system, because am
tudes corresponding to unstable modes are small, and
localization of polymer lipids is not favorable entropicall
On the other hand, when the concentration of polymer lip
h0 is not small, the entropy effect is less important, and
amplitudes of unstable modes increase. In these cases, u
lations of membranes are realized in some parameter reg
We discuss the thermal fluctuations of flat membranes
thermodynamic equilibrium. The partition functionZ is de-
fined as

Z5( exp~2bH !, ~14!

where the summation is taken over all possible states, an
use the measure

( 5)
m

E dwsmE dwcmE dhsmE dhcmE dzsmE dzcm .

~15!

Since the conditionsh(s)>0 andz(s)>0 must be satisfied
as an approximation, we use the measure

E
2h0

h0
dhsmE

2h0

h0
dhcmE

2h0

h0
dzsmE

2h0

h0
dzcm . ~16!

The part of the partition functionZ associated withwcm is
written as

Zcm5E dwcmE
2h0

h0
dhsmE

2h0

h0
dzsmexp~2bHcm!,

~17!

whereHcm is the energy associated with themth modewcm
and b51/kBT (kB is the Boltzmann constant andT is the
temperature!. This partition functionZcm is expressed as

Zcm5E
2`

`

dw expS 2
L

2
Bmw2D

3H E
2h0

h0
dh expF2

L

2
AmS h22

Lkm

Am
wh D G J 2

,

~18!

whereAm and Bm are defined byAm5@Dkm
2 1h9(h0)#/2 ,

and andBm5(kkm
2 1t)/2 . In Eq. ~18!, b is absorbed into

each parametert, L, k, D and h9. The partition function
Zcm is modified as

Zcm5E
0

`

dw expF2
L

2S Bm2
L2km

2

2Am
Dw2G 2

LAm
Tm

2 , ~19!

whereTm is defined by

Tm5E
2ALAm/2[h01~Lkm/2Am!uwu]

ALAm/2[h02~Lkm/2Am!uwu]
dx exp~2x2!. ~20!
e
en
li-
he

s
e
du-
ns.
in

we

In the case thatALAm/2h0@1 is satisfied,Tm is approxi-
mated byTm.Ap if 0<w<(2Am /Lkm)h0 or by Tm.0 if
(2Am /Lkm)h0,w. The partition functionZcm can be esti-
mated by

Zcm.E
0

~2Am /Lkm!h0
dw expF2

L

2S Bm2
L2km

2

2Am
Dw2G 2p

LAm
.

~21!

The average amplitude of fluctuationswcm
2 is calculated by

the partition function Eq.~21! as

^wcm
2 &.

2

LUBm2
L2km

2

2Am
U
E

0

Xm
x2exp~2ax2!dx

E
0

Xm
exp~2ax2!dx

, ~22!

whereXm is defined by

Xm5AL

2
UBm2

L2km
2

2Am
U2Am

Lkm
h0 , ~23!

and a is the sign of Bm2(L2km
2 /2Am). When Bm

2(L2km
2 /2Am)>0 andXm@1, the energy of themth mode

becomes

L

2S Bm2
L2km

2

2Am
D ^wcm

2 &.
1

2
. ~24!

This relation implies the equipartition of energy. WhenBm

2(L2km
2 /2Am),0 is satisfied, themth mode is linearly un-

stable, and the energy of the unstable mode is estimated

L

2S Bm2
L2km

2

2Am
D ^wcm

2 &.2Xm
2 , ~25!

and the amplitude is written by

^wcm
2 &.S 2Am

Lkm
D 2

. ~26!

In order to estimate the parameter region in which
curvature instability is observed, we assume the follow
three conditions. First, we assume that the undulation cau
by unstable modes can be described by a single mode.
is the single-mode approximation@13#. Second, we assum
that the amplitude of the unstable mode can be calcula
from the partition function@Eq. ~21!# when the instability is
not strong. Third, as the observability condition of the u
stable mode, we assume that the energy gained by the
stable mode is comparable to or larger than that of ot
thermally fluctuating modes. Then the number of therma
fluctuating modesDm is DkL/2p, whereDk is the length of
the interval corresponding to stable wave numbers. Since
energy of one stable mode is 1/2 by equipartition of ener
the condition that the unstable mode can be observed is
pressed by

Xm
2 >

L

4p
Dk. ~27!



b

n-
th

h

b
he
b

he

a
ty
e

q.
i-

s

wo
re
ine

ller

ity

s
m.
o

a-

-
s

n
is

ted

uc-
the

e
the

for

on
-

-
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This relation can be written as

S L2km
2

2Am
2BmD S 2Am

Lkm
h0D 2

>C, ~28!

where C is a certain constant. As the observable unsta
mode, we choose the modek* given by Eq.~13!. Then the
observability condition of the unstable mode@Eq. ~28!#, is
written as

t
D

L2
<S A22Akh9~h0!

L2 D H A22Akh9~h0!

L2

2kBT
D

L2
CA L2

kh9~h0!
Y SAD

k
h0D 2J ,

~29!

where the temperature dependence of each parametert, L,
k, D, andh9 is explicitly represented. The observability co
dition @Eq. ~29!# can be considered as a relation between
tensiont and the polymer lipids concentrationh0, and is
depicted in Fig. 8 in Sec. V. This condition describes t
results of Monte Carlo simulations quite well.

IV. COMPUTER SIMULATION

In this section, we give numerical results obtained
Monte Carlo simulation for the model defined in Sec. II. T
model equations used for simulations can be simplified
the following rescaling:

g85
D

L2
G/L, t85

D

L2
t, s85AL2

Dk
s,

k85ADk

L2
k, h85AD

k
h and z85AD

k
z.

~30!

If we assume the energy expression

h~h!5
a

2
h21

b

4
h4, ~31!

for the polymer lipid free energy, the total free energy of t
membrane is described by

g85
1

LE0

LF1

2H S ]w8

]s8
D 2

1S ]h8

]s8
D 2

1S ]z8

]s8
D 2J 2~z82h8!

]w8

]s8

1
ka

L2S h821z82

2
1

kb

Da

h841z84

4 D2t8cosw8Gds8. ~32!

In this expression,ka/L2 andkb/Da are two dimensionless
parameters which characterize the system. The first par
eter ka/L2 represents the strength of curvature instabili
and the second parameterkb/Da determines the amplitud
of w(s) andh(s). For convenience, we omit the symbol8 on
each variable in Eq.~32! from this point.
le

e

e

y

y

m-
,

In order to minimize the free energy expressed by E
~32!, we used the following Monte Carlo scheme. We d
vided the membrane~string! of length L into N segments
represented byN points, and discretized the variablesw, h,
andz at each point. To changew, we chose two points and
then changed the valuesw at these points by small quantitie
so as to satisfy the boundary condition@Eq. ~3!#. For h and
z, we used Kawasaki dynamics@22#, which consists of the
exchange of small amounts of polymer lipids between t
neighboring points. In order to perform finite-temperatu
simulations, we adopted the Metropolis method to determ
whether the new state is accepted. The new values ofw, h,
or z are accepted if the energy of the new state is sma
than that of the old one, i.e.,DF is negative. IfDF is posi-
tive, the new state is accepted with the probabil
exp(2DF/kBT). One Monte Carlo step is composed ofN tri-
als for each variablew, h, andz. These Monte Carlo step
continue until the system is considered to be in equilibriu
In our simulationsN5256, and the number of Monte Carl
steps is 105.

The results of the Monte Carlo simulations are summ
rized as follows. The parameters were fixed ask5D5a
5b5100kBT and L2/ka54. Varying the average concen
tration h0 and tensiont, we sought the equilibrium state
and plotted them in a phase space~Fig. 2! defined by
h0(D/k)1/2 and tD/L2. The following six characteristic
shapes were observed.

~1! A thermally fluctuating flat membrane found in regio
A of Fig. 2 Slow thermal fluctuations are observed in th
region, but regular undulation is not observed. As reflec
by the power spectrum ofw, the amplitudes of unstable
modes are not large, compared with those of thermally fl
tuating modes. This fluctuating membrane appears when
average concentrationh0 of polymer lipids is very small.
Since the concentrationh0 is small, the strength of unstabl
modes cannot develop, and thermal fluctuations dominate
system.

~2! Localized large deformations~Fig. 3! found in region

FIG. 2. Phase diagram obtained by Monte Carlo simulations
L52 andk5D5a5b51. The rescaled tensiontD/L2 is plotted
as a function of the rescaled polymer lipid concentrati
h0(D/k)1/2. The regions fromA to F correspond to different char
acteristic shapes of the membrane.A: Thermal fluctuations.B: Lo-
calized large deformations.C: Undulation over the entire mem
brane.D: Domain structures of undulation.E: Winding structures.
F: Stable flat membrane. The boundaries betweenA and F and
betweenA andE are not drawn in this phase diagram.
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6820 57T. KOHYAMA
B of Fig. 2. Here the concentrations of polymer lipidsh and
z are strongly localized in several areas, and large defor
tions of the membrane appear there. Both the concentra
profile h and the shape of the membrane are shown in Fig
When the concentrationh0 is relatively small, decreasing th
tensiont from a large value, the flat membrane changes
exhibit weak undulation, and the undulation grows in seve
areas to become large localized deformations. Since the
ergy gain due to the coupling between the curvature and
polymer lipids is very large in the strongly deformed parts
the membrane, polymer lipids gather there from neighbor
regions until no polymer lipids remain in these regions s
rounding the localized deformations.

~3! The undulation of the entire membrane~Fig. 4! found
in regionC of Fig. 2. In this region, the regular undulatio
caused by the curvature instability extends over the en
area of the membrane, and does not fluctuate in time.

~4! Domain structures of undulating membranes~Fig. 5!
found in regionD of Fig. 2. The membrane is separated in
several undulating domains which do not merge with e
other in this region.

FIG. 3. The shape of large localized deformations in the me
brane found in regionB of Fig. 2. Here we havetD/L250.1 and
h0(D/k)1/250.2. Other parameters are fixed asL52 and k5D
5a5b51. ~a! The actual shape of the membrane is drawn a
function of time. The initial shape is flat, and the time interv
between each shape drawn in the figure is 5000 Monte Carlo s
~b! The development of the polymer lipid concentrationh(s) is
shown. In the shape of the membrane displayed in~a!, there are
several localized undulations. Polymer lipids are also concentr
here. The concentration of polymer lipids in the nearly flat part
almost zero.
a-
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~5! The winding membrane found in regionE of Fig. 2.
Here the amplitude of the undulation becomes very lar
and some parts of the membrane contact or cross other p
This situation is meaningless in our simulation scheme.

~6! The flat membrane with no fluctuation found in regio
F of Fig. 2. In this region, the flat membrane is not unsta
with respect to any mode.

If we consider our one-membrane model as one kind o
mean-field model for multilamellar systems, the tensiont is
understood as arising from the repulsive interactions betw
neighboring membranes in multilamellar systems, andt be-
comes roughly proportional tod2x22, whered is the spacing
between two membranes, andx is some positive numbe
when the repulsive interaction is proportional tod2x. Using
this relation, we can redraw the phase diagram of Fig. 2
the space defined by the concentration of polymer lipidsh0
and the average spacingd between neighboring membrane
The phase diagram so obtained has a structure quite sim
to that in the phase diagram measured by experiments@5#.
From this fact, we conjecture that a certain kind of stro

-

a
l
ps.

ed
s

FIG. 4. Undulation extended in the entire area of the membr
found in regionC of Fig. 2. The shapes of the membrane are dra
for times 5000i , where i 51,2, . . .,20. Here we havetD/L2

50.375 andh0(D/k)1/250.6. The membrane is uniformly undula
ing over the entire area.

FIG. 5. Domain structures of undulation found in regionD of
Fig. 2. The rescaled parameters satisfytD/L250.475 and
h0(D/k)1/250.6. The shapes of the membranes are drawn at t
intervals of 5000 time steps. The sequence of the membrane sh
shows that there are two different kinds of regions in the membra
One is an almost flat region, and the other is an undulating reg
The boundaries between the two regions move slowly.
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undulation in the one-membrane model corresponds t
state which contains many connected defects in multilam
lar systems, and that weak undulation in the one-membr
system corresponds to the similar undulation in multilame
systems.

In Fig. 6, the average amplitude of the tangential an
A^w2& is plotted. This quantity was calculated from th
simulation results as a function ofh0(D/k)1/2 in the case
when the membrane displays undulation. From the figu
the average amplitudeA^w2& grows almost linearly, causing
the concentrationh0 to increase under the constant tensi
tD/L2. The growth rate ofA^w2& becomes large when th
tensiontD/L2 is small. This implies that large deformation
take place by adding a small amount of polymer lipids wh
the tension is small.

We also calculated theh0 dependence on the wave num
berk of undulation from the simulations. This result is give
in Fig. 7. The characteristic wave numberkmax was obtained
numerically as the mode with the largest amplitude in

FIG. 6. Average amplitude of the tangential angleA^w2& calcu-
lated from the results of Monte Carlo simulations as a function
h0(D/k)1/2. The data are plotted for cases in which the membr
is undulating or thermally fluctuating. Under constant tension,
amplitude grows with increasingh0.

FIG. 7. Rescaled characteristic wave numberkmax(Dk/L2)1/2 as
a function of the rescaled polymer lipid concentrationh0(D/k)1/2.
The characteristic wave numberkmax represents the strongest mod
with the maximum amplitude ofw, measured from the power spe
trum for w. When h0(D/k)1/2,0.2, the membrane is thermall
fluctuating. kmax does not depend strongly onh0. Except for
tD/L250.1, definitet dependence ofkmax is not seen.
a
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ne
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power spectrum ofw. Figure 7 shows that the wave numb
of the undulation does not depend strongly on either
concentrationh0 of polymer lipids or the tensiont, except in
the case that the tension is small. The broken line in Fig
represents the modek* given by Eq.~13!, which first be-
comes unstable when the tension is decreased from a l
value. We can say that the broken line gives the upper li
of the characteristic wave numberkmax obtained through
simulation and that the wave number of undulationkmax is
nearly equal tok* , given by Eq.~13!.

V. SINGLE-MODE APPROXIMATION

In this section we analyze a membrane possessing u
lation using the single-mode approximation@13#, which is
the assumption that the shape of an undulating memb
caused by the curvature instability is approximately char
terized by only one unstable mode. From the fact that
polymer lipids concentrationh and z are both positive, we
find that there are two kinds of solutions resulting from t
single-mode approximation, depending on the polymer li
concentrationh0 and the tensiont. When the concentration
h0 and the tensiont are near the critical line of the instabi
ity, the instability is weak, and the following type of solutio
~type A! can be assumed:

w~s!5A cos~ks!, ~33!

h~s!5B sin~ks!1h0 , ~34!

z~s!52B sin~ks!1h0 . ~35!

Here A and B are the amplitudes of the tangential anglew
and the concentrationh. This solution is valid only when

FIG. 8. Phase diagram calculated using linear stability anal
and the single-mode approximation. The rescaled tensiontD/L2 is
plotted vs the rescaled polymer lipid concentrationh0(D/k)1/2. All
parameters are the same as those in Fig. 2. The broken line i
critical line of instability given by Eq.~12!, and the solid line is the
theoretical estimate given by Eq.~29!, which represents the condi
tion that the amplitude of an unstable mode becomes larger
that of thermal fluctuations. We set the parameterC in Eq. ~29! as
C50.01/kBT. The line with circles represents the boundary
which the amplitude ofw becomes 1.42. Corresponding to th
phase diagram shown in Fig. 2, characteristic shapes of the m
brane are found in the regionsA, C, E, andF. A: Thermal fluctua-
tions. C: Undulation over the entire membrane.E: Winding struc-
tures.F: Stable, flat membrane.
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B,h0 is satisfied. Substituting Eqs.~33!–~35! into Eq.~32!,
the free energy is described as

g5
1

4
k2A22kAB

1
1

2
k2B21

1

2pE0

2pH 2
D

L2
hSAk

D
~Bsinx1h0! D

2t cos~A cosx!J dx. ~36!

The values ofA, B, and k are determined to minimize th
free energy@Eq. ~36!#.

In the case when the parametersh0 andt are far from the
critical line of the instability, the instability becomes rel
tively strong. In this case, the concentration of polymer lip
becomes very large in regions of large curvature, and alm
zero in other regions. Therefore, in these parameter regi
we can approximate the solution by the following piecewi
continuous solution~type B!:

w~s!5A cos~ks!, ~37!

h~s!5max@B sin~ks!1h1 ,0#, ~38!

z~s!5max@2B sin~ks!1h1 ,0#, ~39!

where max[x,y] represents the larger of the valuesx and y.
This solution is supplemented by the conservation of po
mer lipid concentration, expressed by

h05^h~s!&5
1

LE0

L

h~s!ds. ~40!

Substituting Eq.~38! into Eq. ~40!, this conservation is re
written as

tanS p

2
yD2

p

2
y5pS h0

h1
21D , ~41!

where y is introduced byy5122ks1 /p, and s1 satisfies
B sin(ks1)5h1. Using the variabley, this definition fors1 is
equivalent to

cosS p

2
yD5

h1

B
. ~42!

Substituting the assumed solution@Eqs. ~37!–~39!# into Eq.
~32!, the free energy is calculated as

g5
1

4
k2A21H 2kAB1

1

2
k2B2J H 12

y

2
1

sin~py!

2p J
1

1

2pE2p/2

p/2 D

L2
hSAk

D
~Bsinx1h1! D dx

2
1

2pE0

~p/2!y D

L2
hSAk

D
~2Bcosx1h1! D dx
s
st
s,
-

-

2
2t

p E
0

p/2

cos~A cosx!dx. ~43!

Whenh0 andt are given,A, B, k, andh1 are determined by
minimizing the energy@Eq. ~43!#, with respect toA, B, andk
under the conditions represented by Eqs.~41! and ~42!,
which define the functionsh1(B,h0) andy(B,h0).

From numerical calculations for solutions of types A a
B, we find that type A solutions exist only quite near th
critical line of instability, and that almost all solutions i
other regions of instability are of type B. In Fig. 8, we dra
the parameter regions~regionsA andC in Fig. 8! in which
the solutions of types A and B exist. These regions are a
limited to those points for whichw,1.42. The boundary
representing the limit of the existence of stable solutio
~type A or B! coincides with the critical line of the curvatur
instability, given by Eq.~12!. The line satisfyingA51.42
corresponds to the boundary at which the undulation solu
changes to a winding solution~for which some parts of the
membrane touch other parts!, as determined by the shapes
strings obtained through Monte Carlo simulations.~Param-
eters values here areL52,k5D5a5b51, and 1/kBT
5100.! From these observations, we can conclude that
following two conditions determine the parameter region
which undulating membranes exist:~1! The amplitude of the
unstable mode is larger than the amplitude characteriz
thermal fluctuations.~2! A solution found from the single-
mode approximation exists, and the amplitude of the tang
tial anglew is smaller than a certain value~in this caseuwu
,1.42). Comparing Figs. 2 and 8, the region~denoted asC
in Fig. 8! which satisfies these two conditions correspon
well with the regions~denoted asB, C, andD in Fig. 2! in
which undulation of membranes are found in Monte Ca
simulations.

In Fig. 9, we show the relation between the amplitud
A^w2& of tangential angles for solutions~type B! and the
polymer lipid concentrationh0(D/k)1/2. As h0 is increased
with constant tensiontD/L2, A^w2& increases monotoni
cally, and almost linearly whenh0(D/k)1/2 is small. Figure 9
corresponds to Fig. 6, which was obtained from the result
Monte Carlo simulations. Since the solution obtained in
single-mode approximation does not include effects of th

FIG. 9. Average amplitude of the tangential angleA^w2& as a
function of the rescaled concentrationh0(D/k)1/2, calculated using
the single-mode approximation of type B. Nearly linear growth
seen whenh0 is small. This figure should be compared with Fig.
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mal fluctuation and localized structures which are obser
in Monte Carlo simulations, the average amplitudesA^w2& in
the figures do not correspond precisely, but the global t
dencies are very similar.

In order to characterize the undulation, we also calcula
the wave numberk of the solutions~type B! obtained in the
single-mode approximation, and plotted them with respec
the polymer lipid concentrationh0 in Fig. 10. From this
figure, we find that the wave numberk is almost independen
of the concentrationh0, and that thet dependence is als
small whent is larger than a certain value. This behavi
was also observed in the Monte Carlo simulations~see Fig.
7!. In the Monte Carlo simulations, the tensiont dependence
seems smaller than that seen in the single-mode approx
tion. According to the good correspondence between Figs
9, and 10 and Figs. 2, 6, and 7, we can conclude that
single-mode approximation is quite adequate in describ
the undulation of membranes.

VI. CONCLUSION

In this paper, we studied the shape transformations o
one-lipid membrane system with lateral tension and polym

FIG. 10. Rescaled wave numberk(Dk/L2)1/2 as a function of
the rescaled polymer lipid concentrationh0(D/k)1/2, obtained using
the single-mode approximation of type B. The wave number
nearly independent of the concentrationh0, but a slightt depen-
dence is found, especially for smallt. This figure should be com
pared with Fig. 7.
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lipids as a kind of approximation of multilamellar system
Using Monte Carlo simulations, we found several charac
istic shapes of the membrane, including localized large
formations and regular undulations. We used the sing
mode approximation to analyze the undulations of
membrane, and found that the results obtained by Mo
Carlo simulation can be explained well with the theory d
rived from this approximation. The region in which the u
dulation is observed in the membrane is restricted by th
conditions:~1! the curvature instability exists,~2! the insta-
bility is stronger than thermal fluctuations, and~3! the insta-
bility is not so strong that some parts of the membrane to
other parts. The phase diagram in the space of the poly
lipid concentration and the tension determined by the sim
lations has a structure quite similar to that observed in
periments on ‘‘biogels’’@5#. This result indicates that defect
found in multilamellar systems correspond to certain kin
of strong undulations of a single membrane with tensi
Since the undulations occur as a result of the curvature
stability, we conjecture that the complicated defect structu
in ‘‘biogels’’ @6# are also caused by the curvature instabil
which results from the interaction between the polymer l
ids and the curvature of the membranes.

In our model, when the concentration of polymer lipids
quite small, thermal fluctuations dominate, and undulat
cannot be observed. This fact corresponds well to the
that only a small number of defects can be observed in ‘‘b
gels’’ when the polymer lipid concentration is small. The
thermal defects can be understood as an entropy effect
cussed in a previous paper@7#.

Since our model is a one-membrane system, we can
discuss defect structures found in multilamellar systems,
we can conclude that the three conditions mention
above—curvature instability, fluctuations and vesiculation
play important roles in defect formation in multimembra
systems. As shown by direct observations@6#, the connectiv-
ity between vesicular defects is considered to be the caus
gel viscosity in ‘‘biogels.’’ To observe the defect structure
multilamellar systems is quite important. Such work is no
in progress using Monte Carlo simulations, where def
structures similar to those observed in experiments h
been found under suitable conditions@23#.
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